An FDTD Formulation for Wave Propagation in Biological Dispersive Media

نویسنده

  • Sathish Kumar
چکیده

A Finite Difference Time Domain (FDTD) scheme used to model the wave propagation in biological dispersive media has been proposed in this paper. FDTD scheme based on the direct solution of time domain Maxwell’s equations has developed and these solutions were approximated by time based linear functions. We are applied FDTD scheme for different dispersive media models such as Cole-Cole, Cole-Davidson, Havriliak–Negami dispersive models of the biological tissues. This proposed scheme is demonstrated by simulating Gaussian pulse propagation in the dispersive medium slabs with air interface at edges. In this proposed formulation, magnetic field components are coupled by the electric field components of Maxwell’s equation further development obtained by means of boundary conditions across the interfaces are applied by means of time dependent jump conditions. By calculating reflection coefficient for muscles, bone at air interfaces we obtain promising results and these results plays a key role in microwave medical imaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان

With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...

متن کامل

Axisymmetric Scaled Boundary Finite Element Formulation for Wave Propagation in Unbounded Layered Media

Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetri...

متن کامل

An efficient finite difference time domain algorithm for band structure calculations of Phononic crystal

In this paper, a new algorithm for studying elastic wave propagation in the phononic crystals is presented. At first, the displacement-based forms of elastic wave equations are derived and then the forms are discretized using finite difference method. So the new algorithm is called the displacement-based finite difference time domain (DBFDTD). Three numerical examples are computed with this met...

متن کامل

Study of the Parameters Affecting Cylindrical Cloak Using Dispersive FDTD

In this paper, an ideal cylindrical metamaterial invisibility cloak with infinite-length which its electric permittivity and magnetic permeability mapped to the Drude dispersion model is simulated. The sinusoidal plane waves with microwave frequencies used as sources. To this end, the dispersive finite-difference time-domain method (FDTD) used with Convolutional Perfectly Matched Layered (CPML)...

متن کامل

Three-dimensional Fdtd Analysis of the Dual-band Implantable Antenna for Contin- Uous Glucose Monitoring

The finite difference time domain (FDTD) method is widely used as a computational tool to simulate the electromagnetic wave propagation in biological tissues. When expressed in terms of Debye parameters, dispersive biological tissues dielectric properties can be efficiently incorporated into FDTD codes. In this paper, FDTD formulation with nonuniform grid is presented to simulate a dual medical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016